

WEEKLY TEST MEDICAL PLUS -04 TEST - 01 RAJPUR SOLUTION Date 21-07-2019

[CHEMSITRY]

46. Molarity =
$$\frac{w}{M_B} \times \frac{1000}{V(\text{in mL})}$$

$$^{\text{w}}$$
[Ca(OH)₂] = $\frac{0.5 \times 74 \times 500}{1000}$ = 18.5g

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_3O$$

74g $Ca(OH)_2 = 100$ g $CaCO_3$

$$18.5\text{gCa(OH)}_2 = \frac{100 \times 8.5}{74} = 25\text{gCaCO}_3$$

47. Molar mass of
$$C_{60}H_{122} = 842 \text{ g}$$

Mass of one molecule
$$=$$
 $\frac{842}{6.02 \times 10^{23}} = 842 \times 1.66 \times 10^{-24} = 1.4 \times 10^{-21} g$

48. 15 L H₂(g) at STP =
$$\frac{15}{22.4} \times 6.02 \times 10^{23} = 4.03 \times 10^{23}$$
 molecules

15 L N₂(g) at STP =
$$\frac{15}{22.4} \times 6.02 \times 10^{23} = 1.34 \times 10^{23}$$
 molecules

0.5 g H₂(g) at STP =
$$\frac{0.5}{2} \times 6.02 \times 10^{23} = 1.5 \times 10^{23}$$
 molecules

10 g
$$O_2(g)$$
 at STP = $\frac{10}{32} \times 6.02 \times 10^{23} = 1.88 \times 10^{23}$ molecules

49. Average atomic weigth
$$=$$
 $\frac{(200 \times 90) + (199 \times 8) + (202 \times 2)}{100} = 199.96 = 200$ amu

50.
$$CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O; \Delta H = -723kJ$$

1.5 mol
$$O_2 = 723$$
 kJ (evolved)

1 mole
$$O_2 = \frac{723}{1.5} = 482 \text{ kJ}$$

51.
$$100amu = (100) \left(\frac{1g}{6.022 \times 10^{23}} \right) = 1.66 \times 10^{-22} g$$

Mass of 7.0 x
$$10^{22}$$
 molecules = $\frac{7.0 \times 10^{22}}{6.022 \times 10^{23}} \times 46h = 5.35g$

Mass of
$$8.0 \times 10^{-1}$$
 mol = 0.8×46 g = 36.8 g

52.
$$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O_{3}$$

53. Ratio of atoms C:H::
$$\frac{85.6}{12}$$
: $\frac{14.4}{1}$:: 7.13:14.4::1:2

Simplest formula: CH₂

54. Number of atoms =
$$3 \times$$
 Number of moles × Avogadro Number = $3 \times 0.1 \times 6.02 \times 10^{23} = 1.806 \times 10^{23}$

55.
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$

$$16 \text{ g oxygen} = 24 \text{ g Mg}$$

$$0.56 \text{ g oxygen } = \frac{24 \times 0.56}{16} = 0.84 \text{ g Mg}$$

Given mass of Mg is 1.0 g which is surplus by 1.0 - 0.84 = 0.16 g (Left)

Pressure exerted by
$$H_2$$
 = mole fraction of H_2 x total pressure
Suppose w gram of both CH_4 and H_2 were taken.

Moles of
$$H_2 = \frac{w}{M.W} = \frac{w}{2}$$
; Moles of $CH_4 = \frac{w}{16}$

Mole fraction
$$H_2 = \frac{w/2}{\frac{w}{2} + \frac{w}{16}} = \frac{8}{9}$$

Pressure exerted by $H_2 = \frac{8}{9} \times \text{total pressure}$

57.
$$\begin{array}{cccc} CaCO_3 & \rightarrow & CaO & + & CO_2 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

$$22.4 L CO_2 = 100 g CaCO_3$$

$$44.8 L CO_2 = \frac{100 \times 44.8}{22.4} = 200g CaCO_3$$

For the use of 80 g CaCO₃, the amount taken = 100 g

For the use of 200 g CaCO₃, the amount taken
$$=\frac{100\times200}{80}=250g$$

58. The averge isotopic mass or atomic mass =
$$\sum m_i \times \frac{X_i}{100}$$

where $m_i = mass$ of i^{th} isotope, $x_i = abundance$ of i^{th} isotope

∴ Atomic mass =
$$54 \times \frac{5}{100} + 56 \times \frac{90}{100} + 57 \times \frac{5}{100}$$

$$=55.95$$

$$=\frac{0.33}{100}\times67200=22.176g$$

No. of moles of Fe atoms per mole of haemoglobin $=\frac{221.76}{56}$

$$= 3.96 = 4$$
 (whole number)

60.
$$490 \text{ mg H}_2\text{SO}_4 = 490 \times 10^{-3} \text{ g H}_2\text{SO}_4 = \frac{490 \times 10^{-3}}{98} \text{mol}$$

$$= \frac{490 \times 10^{-3} \times 6.02 \times 10^{23}}{98} \text{ molecules} = 3.01 \times 10^{21} \text{ molecules}$$

Molecules left over =
$$(3.01 \times 10^{21}) - (10^{20}) = 3.01 \times 10^{-21} - 0.1 \times 10^{21} = (3.01 - 0.1) \times 10^{21} = 2.91 \times 10^{21}$$

61. $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$

22400 mL of methane requires = 20 mL of oxygen.

This means that 20 mL of methane will burn completely using 20 mL of oxygen.

 \therefore Volume of the gas left will be of oxygen only = (50 - 20) = 30 mL

62.
$$m = \frac{m}{d - M(M_B kg)} = \frac{0.5}{1.02 - 0.5 \times \frac{40}{1000}} = \frac{0.5}{1.02 - 0.02} = 0.5$$

63.
$$u_{urea} = \frac{15}{60} = \frac{1}{4} = 0.25$$

$$u_{H_2O} = \frac{175.5}{18} = 9.75$$

$$\chi_{\text{urea}} = \frac{0.25}{0.25 + 9.75} = \frac{0.25}{10} = 0.025$$

64. 11.11 moles of urea in 1000 g water, i.e., 55.55 moles of H₂O.

$$\chi_{\text{urea}} = \frac{11.11}{11.11 + 55.55} = \frac{1}{6} = 0.17$$

$$65. \qquad \qquad M = \frac{10x\%d}{M_B}$$

$$\Rightarrow$$
 d = $\frac{MM_B}{10x\%} = \frac{3.6 \times 98}{10 \times 29} = 1.216g \text{ mL}^{-1}$

66. Molarity =
$$\frac{10xd}{M_B} = \frac{10 \times 98 \times 1.96}{98} = 19.6M$$

Normality of $H_2SO_4 = 2 \times Molarity = 2 \times 19.6 = 39.2 \text{ N}$

67. 1 L or 1000 mL of 0.001 M HCl solution contains 0.001 mole of Cl⁻ ions

∴ 100 mL of 0.001 M HCl solution will contain =
$$\frac{0.001}{10}$$
 mol of Cl⁻ions

1 mol of Cl⁻ ions \equiv 6.023 × 10²³ Cl⁻ ions [\cdot : Avogadro's law]

$$\therefore$$
 10⁻⁴ mol of Cl⁻ = 6.022 x 10²³ x 10⁻⁴ Cl⁻ ions 6.022 x 10¹⁹ Cl⁻ ions

68. Let the mass of
$$O_2 = x$$
 and that of $N_2 = 4x$

No. of molecules of
$$O_2 = \frac{x}{32}$$

No. of molecules of
$$N_2 = \frac{4x}{28} = \frac{x}{7}$$

Ration
$$\frac{x}{32}$$
: $\frac{x}{7}$ or 7:32

69. The ratio of number of molecules is the same as the ratio of number of their moles,

For the same weight x, ratio of number of molecules of O₂ and SO₂ will be

70. 300 mL of a gas weighs 0.368 g

1 mL of a gas will weigh =
$$\frac{0.368}{300}$$
g

22400 mL of a gas will weight =
$$\frac{0.368}{300} \times 22400 = 27.477 \approx 27.5 \text{ g}$$

71. Gram molecular mass of NH₃ is 7 g.

$$\therefore$$
 No. of molecules in 4.25 g of NH₃ = $\frac{4.25}{17}$ N_A = $\frac{N_A}{4}$

Now, one molecule of $\mathrm{NH_3}$ contans 4 atoms

$$\therefore \quad \frac{N_{\text{A}}}{4} \text{ molecules contian } \frac{N_{\text{A}}}{4} \times 4 = N_{\text{A}} \text{ atoms}$$

Again, 32 g of $O_2 = N_A$ molecules = $2N_A$ atoms

$$\therefore$$
 8 g of $O_2 = \frac{N_A}{32} \times 8 = \frac{N_A}{4}$ molecules $\frac{2N_A}{32} \times 8 = \frac{N_A}{2}$ atoms

On the other hand,

 $2g ext{ of } H_2 = N_A ext{ molecules} = 2N_A ext{ atoms}$

4g of He = N_{Δ} atoms [::gram atomic mass of He = 4g]

72.
$$CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$$

100 g of CaCO₃ gives 1 mole or 6.023 × 10²³ molecules of CO₂

$$10^{-3} \text{g of CaCO}_3 \text{ gives} = \frac{6.023 \times 10^{23}}{100} \times 10^{-3}$$

= 6.023×10^{18} molecules of CO_2

73. Number of atoms in 800 mg of Ca =
$$\frac{800 \times 10^{-3}}{40} \times N_A = 0.02N_A$$
 atoms

 N_A atom of neon are present in 22.4 L

$$\therefore \quad 0.02 \ N_{_A} \ \text{atoms of neon are present in} = \frac{22.4}{N_{_A}} \times 0.02 \times N_{_A} = 0.448 L = 448 cm^3$$

74. Ammonium dichromate is $(NH_4)_2 Cr_2 O_7$.

1 mole consists of 2 atoms of N, 8 atoms of H, 2 atoms of Cr, and 7 atoms of O. So, total no. of atoms = $(2 + 8 + 2 + 7) \times 6.023 \times 10^{23}$

75. Moles of water produced =
$$\frac{0.72}{18} = 0.04$$

 $= 114.437 \times 10^{23}$

Moles of
$$CO_2$$
 produced = $\frac{3.08}{44}$ = 0.07

Equation for combustion of an unknown hydrocarbon, C_xH_v is

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

$$\Rightarrow$$
 x = 0.07 and $\frac{y}{2} = 0.04 \Rightarrow y = 0.08$ and $\frac{x}{y} = \frac{0.07}{0.08} = \frac{7}{8}$

:. The empirical formula of the hydrocarbon is C₇H₈

76.
$$CH_{3}CH = CH_{2} + 9 / 2O_{2} \rightarrow 3CO_{2} + 3H_{2}O = 54g$$

 $54g pf H_2P \equiv 42 g of propene$

$$\therefore$$
 24 g of H₂O = $\frac{42}{54} \times 27 = 21g$

77.
$$(COOH_2)+ 2NaOH \rightarrow (COONa)_2 + 2H_2O$$

Mol. of mass of NaOH = 40 g mol^{-1}

No. of moles in 0.064 g of NaOH =
$$\frac{0.064}{40}$$
 = 0.0016

No. of mole of oxalic acid =
$$\frac{0.0016}{2} = 8 \times 10^{-4}$$

Volume of solution (in L) =
$$\frac{25}{1000}$$

Hence, molarity =
$$\frac{\text{No. of moles of solute}}{\text{Volume of solution (in L)}}$$

$$= 8 \times 10^{-4} \times \frac{1000}{25} = 0.032M$$

78. Normality = Molarity × acidity of base Ca(OH)₂ = N₁ = 0.1 × 2 = 0.2; N₂ = 0.1 $N_1V_1 = N_2V_2$ Ca(OH)₂HCl

$$0.2 \times V_1 = 0.1 \times 10 \Rightarrow V_1 = \frac{0.1 \times 10}{0.2} = 5 \text{ mL}$$

79. Number of gram equivalents of HCI =
$$\frac{\text{Normality} \times \text{V}}{1000} = \frac{0.1 \times 100}{1000} = 0.01$$

Number of gram equivalents of metal carbonate = number of gram equivalents of HCI

$$\frac{W}{F} = 0.01$$
 $\Rightarrow \frac{2}{F} = 0.01$ $\Rightarrow E = 200$

80.
$$Mw_2$$
 of $CaCO_3 = 40 + 12 + 48 = 100$

Moles of CaCO₃ in $10g = \frac{10}{100} = 0.1 \text{ mol} = 0.1 \text{ g tom}$

81.
$$\begin{aligned} N_1 V_1 + N_2 V_2 + N_3 V_3 &= N_4 V_4 \\ (V_4 &= V_1 + V_2 + V_3 + V_4) \text{ or } V_4 &= \text{Final volume} = 1 \text{ L} \equiv 1000 \text{ mL} \\ 5 \times N + 20 \times \frac{N}{2} + 30 \times \frac{N}{3} = N_4 = 100 \end{aligned}$$

$$\therefore N_4 = \frac{N}{40}$$

Weight of
$$6.023 \times 10^{23}$$
 (Avogardo's number) = Mw of CuSO₄.5H₂O = 249 g = 1 mol of CuSO₄.5H₂O

Weight of 1 x 10²² molecules fo CuSO₄.5H₂O =
$$\frac{249 \times 1 \times 10^{22}}{6.023 \times 10^{23}}$$
 = 4.14g

83.
$$M_1 = 1.0 \text{ M}, M_2 = 0.25 \text{ M}$$

Let V_1 and V_2 are volumes required.
 $(1.0 \times V_1 + 0.25 \times V_2) = 0.75 (V_1 + V_2)$

$$\Rightarrow$$
 0.25 $V_1 = 0.5V_2$, $\Rightarrow V_1 : V_2 = 2 : 1$

Molality (m) =
$$\frac{\text{Moles of solute}}{\text{Mas of solvent in kg}}$$

The molality of a solution remains independent of temperature because it involves only mass, which is independent of temperature.

$$M = 0.875$$

$$\frac{6.3}{63} \times \frac{1}{250} \times 100 = 0.4$$

[Ew for (COOH),.2H,O is 63]

 $NV(acid) = N_2V_2(vase)$

or
$$0.4 \times 10 = 0.1 \times V_2$$

or
$$V_2 = 40 \text{ mL}$$