WEEKLY TEST MEDICAL PLUS -04 TEST - 01 RAJ PUR SOLUTION Date 21-07-2019

[CHEMSITRY]

46. Molarity $=\frac{\mathrm{w}}{\mathrm{M}_{\mathrm{B}}} \times \frac{1000}{\mathrm{~V}(\text { in } \mathrm{mL})}$
${ }^{\mathrm{w}}\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=\frac{0.5 \times 74 \times 500}{1000}=18.5 \mathrm{~g}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{3} \mathrm{O}$
$74 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}=100 \mathrm{~g} \mathrm{CaCO}_{3}$
$18.5 \mathrm{gCa}(\mathrm{OH})_{2}=\frac{100 \times 8.5}{74}=25 \mathrm{gCaCO}_{3}$
47. Molar mass of $\mathrm{C}_{60} \mathrm{H}_{122}=842 \mathrm{~g}$

Mass of one molecule $=\frac{842}{6.02 \times 10^{23}}=842 \times 1.66 \times 10^{-24}=1.4 \times 10^{-21} \mathrm{~g}$
48. $15 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at $\mathrm{STP}=\frac{15}{22.4} \times 6.02 \times 10^{23}=4.03 \times 10^{23}$ molecules
$15 \mathrm{LN}_{2}(\mathrm{~g})$ at $\mathrm{STP}=\frac{15}{22.4} \times 6.02 \times 10^{23}=1.34 \times 10^{23}$ molecules
$0.5 \mathrm{~g} \mathrm{H}_{2}(\mathrm{~g})$ at STP $=\frac{0.5}{2} \times 6.02 \times 10^{23}=1.5 \times 10^{23}$ molecules
$10 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$ at STP $=\frac{10}{32} \times 6.02 \times 10^{23}=1.88 \times 10^{23}$ molecules
49. Average atomic weigth $=\frac{(200 \times 90)+(199 \times 8)+(202 \times 2)}{100}=199.96=200 \mathrm{amu}$
50.
$\mathrm{CH}_{3} \mathrm{OH}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}=-723 \mathrm{~kJ}$
$1.5 \mathrm{~mol} \mathrm{O}_{2}=723 \mathrm{~kJ}$ (evolved)
$1 \mathrm{~mole}_{2}=\frac{723}{1.5}=482 \mathrm{~kJ}$
51. $100 \mathrm{amu}=(100)\left(\frac{1 \mathrm{~g}}{6.022 \times 10^{23}}\right)=1.66 \times 10^{-22} \mathrm{~g}$

Mass of 7.0×10^{22} molecules $=\frac{7.0 \times 10^{22}}{6.022 \times 10^{23}} \times 46 \mathrm{~h}=5.35 \mathrm{~g}$
Mass of $8.0 \times 10^{-1} \mathrm{~mol}=0.8 \times 46 \mathrm{~g}=36.8 \mathrm{~g}$
52.
$\underset{1 \mathrm{~L}}{\mathrm{C}_{3} \mathrm{H}_{8}}+\underset{5 \mathrm{~L}}{5 \mathrm{O}_{2}} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
53. Ratio of atoms $\mathrm{C}: \mathrm{H}:: \frac{85.6}{12}: \frac{14.4}{1}:: 7.13: 14.4:: 1: 2$

Simplest formula: CH_{2}
54. Number of atoms $=3 \times$ Number of moles \times Avogadro Number
$=3 \times 0.1 \times 6.02 \times 10^{23}=1.806 \times 10^{23}$
55. $\mathrm{Mg}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{MgO}$

16 g oxygen $=24 \mathrm{~g} \mathrm{Mg}$
0.56 g oxygen $=\frac{24 \times 0.56}{16}=0.84 \mathrm{~g} \mathrm{Mg}$

Given mass of Mg is 1.0 g which is surplus by $1.0-0.84=0.16 \mathrm{~g}$ (Left)
56. Pressure exerted by $\mathrm{H}_{2}=$ mole fraction of $\mathrm{H}_{2} \times$ total pressure

Suppose w gram of both CH_{4} and H_{2} were taken.
Moles of $\mathrm{H}_{2}=\frac{\mathrm{w}}{\mathrm{M} . \mathrm{W}}=\frac{\mathrm{w}}{2}$; Moles of $\mathrm{CH}_{4}=\frac{\mathrm{w}}{16}$
Mole fraction $\mathrm{H}_{2}=\frac{\mathrm{w} / 2}{\frac{\mathrm{w}}{2}+\frac{\mathrm{w}}{16}}=\frac{8}{9}$
Pressure exerted by $\mathrm{H}_{2}=\frac{8}{9} \times$ total pressure
57.

For the use of $80 \mathrm{~g} \mathrm{CaCO}_{3}$, the amount taken $=100 \mathrm{~g}$
For the use of $200 \mathrm{~g} \mathrm{CaCO}_{3}$, the amount taken $=\frac{100 \times 200}{80}=250 \mathrm{~g}$
58. The averge isotopic mass or atomic mass $=\sum m_{i} \times \frac{x_{i}}{100}$
where $\mathrm{m}_{\mathrm{i}}=$ mass of $\mathrm{i}^{\text {th }}$ isotope, $\mathrm{x}_{\mathrm{i}}=$ abundance of $\mathrm{i}^{\text {th }}$ isotope
$\therefore \quad$ Atomic mass $=54 \times \frac{5}{100}+56 \times \frac{90}{100}+57 \times \frac{5}{100}$
$=55.95$
59. Mass of Fe in one mole of haemoglobin $=0.33 \%$ of 67200
$=\frac{0.33}{100} \times 67200=22.176 \mathrm{~g}$
No. of moles of Fe atoms per mole of haemoglobin $=\frac{221.76}{56}$
$=3.96=4$ (whole number)
60. $490 \mathrm{mg} \mathrm{H}_{2} \mathrm{SO}_{4}=490 \times 10^{-3} \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{490 \times 10^{-3}}{98} \mathrm{~mol}$
$=\frac{490 \times 10^{-3} \times 6.02 \times 10^{23}}{98}$ molecules $=3.01 \times 10^{21}$ molecules
Molecules left over $=\left(3.01 \times 10^{21}\right)-\left(10^{20}\right)=3.01 \times 10^{-21}-0.1 \times 10^{21}$
$=(3.01-0.1) \times 10^{21}=2.91 \times 10^{21}$

AVIRAL CLASSES

cREATING SCHOLARS
61. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

22400 mL of methane requires $=20 \mathrm{~mL}$ of oxygen.
This means that 20 mL of methane will burn completely using 20 mL of oxygen.
$\therefore \quad$ Volume of the gas left will be of oxygen only $=(50-20)=30 \mathrm{~mL}$
62.
$\mathrm{m}=\frac{\mathrm{m}}{\mathrm{d}-\mathrm{M}\left(\mathrm{M}_{\mathrm{B}} \mathrm{kg}\right)}=\frac{0.5}{1.02-0.5 \times \frac{40}{1000}}=\frac{0.5}{1.02-0.02}=0.5$
63. $u_{\text {urea }}=\frac{15}{60}=\frac{1}{4}=0.25$
$u_{\mathrm{H}_{2} \mathrm{O}}=\frac{175.5}{18}=9.75$
$\chi_{\text {urea }}=\frac{0.25}{0.25+9.75}=\frac{0.25}{10}=0.025$
64. 11.11 moles of urea in 1000 g water, i.e., 55.55 moles of $\mathrm{H}_{2} \mathrm{O}$.
$\chi_{\text {urea }}=\frac{11.11}{11.11+55.55}=\frac{1}{6}=0.17$
65. $M=\frac{10 x \% d}{M_{B}}$
$\Rightarrow \quad \mathrm{d}=\frac{\mathrm{MM}_{\mathrm{B}}}{10 \mathrm{x} \%}=\frac{3.6 \times 98}{10 \times 29}=1.216 \mathrm{~g} \mathrm{~mL}^{-1}$
66. Molarity $=\frac{10 x d}{M_{B}}=\frac{10 \times 98 \times 1.96}{98}=19.6 \mathrm{M}$

Normality of $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \times$ Molarity $=2 \times 19.6=39.2 \mathrm{~N}$
67. 1 L or 1000 mL of 0.001 M HCl solution contains 0.001 mole of Cl^{-}ions
$\therefore \quad 100 \mathrm{~mL}$ of 0.001 M HCl solution will contain $=\frac{0.001}{10} \mathrm{~mol}$ of Cl^{-}ions
1 mol of Cl^{-}ions $\equiv 6.023 \times 10^{23} \mathrm{Cl}^{-}$ions $[\because$ Avogadro's law]
$\therefore \quad 10^{-4} \mathrm{~mol}$ of $\mathrm{Cl}^{-} \equiv 6.022 \times 10^{23} \times 10^{-4} \mathrm{Cl}^{-}$ions
$6.022 \times 10^{19} \mathrm{Cl}^{-}$ions
68. Let the mass of $\mathrm{O}_{2}=\mathrm{x}$ and that of $\mathrm{N}_{2}=4 \mathrm{x}$

No. of molecules of $\mathrm{O}_{2}=\frac{x}{32}$
No. of molecules of $N_{2}=\frac{4 x}{28}=\frac{x}{7}$
Ration $\frac{x}{32}: \frac{x}{7}$ or $7: 32$
69. The ratio of number of molecules is the same as the ratio of number of their moles, For the same weight x, ratio of number of molecules of O_{2} and SO_{2} will be
70. $\quad 300 \mathrm{~mL}$ of a gas weighs 0.368 g

1 mL of a gas will weigh $=\frac{0.368}{300} \mathrm{~g}$
22400 mL of a gas will weight $=\frac{0.368}{300} \times 22400=27.477 \approx 27.5 \mathrm{~g}$
71. Gram molecular mass of NH_{3} is 7 g .
$\therefore \quad$ No. of molecules in 4.25 g of $\mathrm{NH}_{3}=\frac{4.25}{17} \mathrm{~N}_{\mathrm{A}}=\frac{\mathrm{N}_{\mathrm{A}}}{4}$
Now, one molecule of NH_{3} contans 4 atoms

AVIRAL CLASSES

CREATING SCHOLARS
$\therefore \quad \frac{\mathrm{N}_{\mathrm{A}}}{4}$ molecules contian $\frac{\mathrm{N}_{\mathrm{A}}}{4} \times 4=\mathrm{N}_{\mathrm{A}}$ atoms
Again, 32 g of $\mathrm{O}_{2}=\mathrm{N}_{\mathrm{A}}$ molecules $=2 \mathrm{~N}_{\mathrm{A}}$ atoms
$\therefore \quad 8 \mathrm{~g}$ of $\mathrm{O}_{2}=\frac{\mathrm{N}_{\mathrm{A}}}{32} \times 8=\frac{\mathrm{N}_{\mathrm{A}}}{4}$ molecules $\frac{2 \mathrm{~N}_{\mathrm{A}}}{32} \times 8=\frac{\mathrm{N}_{\mathrm{A}}}{2}$ atoms
On the other hand,
2 g of $\mathrm{H}_{2}=\mathrm{N}_{\mathrm{A}}$ molecules $=2 \mathrm{~N}_{\mathrm{A}}$ atoms
4 g of $\mathrm{He}=\mathrm{N}_{\mathrm{A}}$ atoms $\quad[\because$ gram atomic mass of $\mathrm{He}=4 \mathrm{~g}]$
72. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

100 g of CaCO_{3} gives 1 mole or 6.023×10^{23} molecules of CO_{2}
$10^{-3} \mathrm{~g}$ of CaCO_{3} gives $=\frac{6.023 \times 10^{23}}{100} \times 10^{-3}$
$=6.023 \times 10^{18}$ molecules of CO_{2}
73. Number of atoms in 800 mg of $\mathrm{Ca}=\frac{800 \times 10^{-3}}{40} \times \mathrm{N}_{\mathrm{A}}=0.02 \mathrm{~N}_{\mathrm{A}}$ atoms
N_{A} atom of neon are present in 22.4 L
$\therefore \quad 0.02 \mathrm{~N}_{\mathrm{A}}$ atoms of neon are present in $=\frac{22.4}{\mathrm{~N}_{\mathrm{A}}} \times 0.02 \times \mathrm{N}_{\mathrm{A}}=0.448 \mathrm{~L}=448 \mathrm{~cm}^{3}$
74. Ammonium dichromate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

1 mole consists of 2 atoms of $\mathrm{N}, 8$ atoms of $\mathrm{H}, 2$ atoms of Cr , and 7 atoms of O .
So, total no. of atoms $=(2+8+2+7) \times 6.023 \times 10^{23}$
$=114.437 \times 10^{23}$
75. Moles of water produced $=\frac{0.72}{18}=0.04$

Moles of CO_{2} produced $=\frac{3.08}{44}=0.07$
Equation for combustion of an unknown hydrocarbon, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$ is
$\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \rightarrow \mathrm{xCO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$\Rightarrow x=0.07$ and $\frac{y}{2}=0.04 \Rightarrow y=0.08$ and $\frac{x}{y}=\frac{0.07}{0.08}=\frac{7}{8}$
$\therefore \quad$ The empirical formula of the hydrocarbon is $\mathrm{C}_{7} \mathrm{H}_{8}$
76.
$\underset{42 \mathrm{~g}}{\mathrm{CH}_{3} \mathrm{CH}}=\mathrm{CH}_{2}+9 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\underset{3 \times 18}{3 \mathrm{H}_{2} \mathrm{O}}=54 \mathrm{~g}$
$54 \mathrm{~g} \mathrm{pf} \mathrm{H}_{2} \mathrm{P} \equiv 42 \mathrm{~g}$ of propene
$\therefore \quad 24 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}=\frac{42}{54} \times 27=21 \mathrm{~g}$
77.
$\left(\mathrm{COOH}_{2}\right)+\underset{2 \mathrm{~mol}}{2 \mathrm{NaOH}} \rightarrow(\mathrm{COONa})_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Mol. of mass of $\mathrm{NaOH}=40 \mathrm{~g} \mathrm{~mol}^{-1}$
No. of moles in 0.064 g of $\mathrm{NaOH}=\frac{0.064}{40}=0.0016$
No. of mole of oxalic acid $=\frac{0.0016}{2}=8 \times 10^{-4}$
Volume of solution (in L) $=\frac{25}{1000}$
Hence, molarity $=\frac{\text { No. of moles of solute }}{\text { Volume of solution (in L) }}$

AVIRAL CLASSES

CREATING SCHOLARS
$=8 \times 10^{-4} \times \frac{1000}{25}=0.032 \mathrm{M}$
78. \quad Normality $=$ Molarity \times acidity of base $\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{N}_{1}=0.1 \times 2=0.2 ; \mathrm{N}_{2}=0.1$
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{HCl}$
$0.2 \times \mathrm{V}_{1}=0.1 \times 10 \Rightarrow \mathrm{~V}_{1}=\frac{0.1 \times 10}{0.2}=5 \mathrm{~mL}$
79. Number of gram equivalents of $\mathrm{HCl}=\frac{\text { Normality } \times \mathrm{V}}{1000}=\frac{0.1 \times 100}{1000}=0.01$

Number of gram equivalents of metal carbonate $=$ number of gram equivalents of HCl
$\frac{\mathrm{w}}{\mathrm{E}}=0.01 \Rightarrow \frac{2}{\mathrm{E}}=0.01 \Rightarrow \mathrm{E}=200$
80. Mw_{2} of $\mathrm{CaCO}_{3}=40+12+48=100$

Moles of CaCO_{3} in $10 \mathrm{~g}=\frac{10}{100}=0.1 \mathrm{~mol}=0.1 \mathrm{~g}$ tom
81. $\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}+\mathrm{N}_{3} \mathrm{~V}_{3}=\mathrm{N}_{4} \mathrm{~V}_{4}$
$\left(\mathrm{V}_{4}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\mathrm{V}_{4}\right)$ or $\mathrm{V}_{4}=$ Final volume $=1 \mathrm{~L} \equiv 1000 \mathrm{~mL}$
$5 \times N+20 \times \frac{N}{2}+30 \times \frac{N}{3}=N_{4}=100$
$\therefore \quad \mathrm{N}_{4}=\frac{\mathrm{N}}{40}$
82. Weight of 6.023×10^{23} (Avogardo's number) $=\mathrm{Mw}$ of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=249 \mathrm{~g}$
$=1 \mathrm{~mol}$ of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Weight of 1×10^{22} molecules fo $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\frac{249 \times 1 \times 10^{22}}{6.023 \times 10^{23}}=4.14 \mathrm{~g}$
83. $\mathrm{M}_{1}=1.0 \mathrm{M}, \mathrm{M}_{2}=0.25 \mathrm{M}$

Let V_{1} and V_{2} are volumes required.
$\left(1.0 \times \mathrm{V}_{1}+0.25 \times \mathrm{V}_{2}\right)=0.75\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)$
$\Rightarrow 0.25 \mathrm{~V}_{1}=0.5 \mathrm{~V}_{2}, \Rightarrow \mathrm{~V}_{1}: \mathrm{V}_{2}=2: 1$
84. Molarity, normality, and formality are calculated against the volume of the solution. The volume of the solution changes with change in temperature; therefore, these quantities do not remain constant with temperature
Molality $(\mathrm{m})=\frac{\text { Moles of solute }}{\text { Mas of solvent in kg }}$
The molality of a solution remains independent of temperature because it involves only mass, which is independent of temperature.
$\mathrm{M}=0.875$
85. D
86. The normality of oxalic acid dihydrate is
$\frac{6.3}{63} \times \frac{1}{250} \times 100=0.4$
[Ew for $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is 63]
$\mathrm{NV}($ acid $)=\mathrm{N}_{2} \mathrm{~V}_{2}($ vase $)$
or $\quad 0.4 \times 10=0.1 \times \mathrm{V}_{2}$
or $\quad V_{2}=40 \mathrm{~mL}$
87.

B
88.

C
89. D
90. B

